স্বাভাবিক সংখ্যাজগতের (natural numbers) এক অনন্য প্রজাতির বাসিন্দা হলো “মৌলিক সংখ্যা” (prime numbers)। যে সংখ্যাগুলো কেবলমাত্র ১ এবং সেই সংখ্যাটি দ্বারা বিভাজ্য, তাদের বলে “মৌলিক সংখ্যা”। আক্ষরিক অর্থে মৌলিক সংখ্যারাই সংখ্যাজগতের ভিত্তিপ্রস্তর কারণ তারা অন্যান্য স্বাভাবিক সংখ্যা গঠনের প্রধান উপাদান হিসেবে কাজ করে (অন্য সংখ্যাগুলোকে বলে “যৌগিক সংখ্যা”)। একেবারে গোড়ার দিকের মৌলিক সংখ্যাগুলো, অর্থাৎ ২, ৩, ৫, ৭, ১১, ১৩, ১৭, ১৯, ২৩, ২৯, ৩১, ৩৭, … ইত্যাদিদের দিকে যদি তাকাও, তাহলে দেখতে পাবে ২ ছাড়া সবকটি সংখ্যাই বিজোড় (odd numbers) এবং এদের বিন্যাসেরও কোনো সুনির্দিষ্ট নিয়ম আপাতভাবে দেখা যায় না। সুতরাং প্রশ্ন ওঠে এই মৌলিক সংখ্যাদের কি কোনো শেষ আছে ? এটা ইতিমধ্যেই প্রমাণিত যে মৌলিক সংখ্যার কোনো শেষ নেই। সুতরাং পরবর্তী সমস্ত গবেষণার একটা মূখ্য কেন্দ্রীয় প্রশ্ন হলো এরকম – তোমায় একটা বড় সংখ্যা দেওয়া হলো, যতটা বড় তুমি ভাবতে চাও, তুমি কি বলতে পারবে সংখ্যাটা মৌলিক নাকি মৌলিক নয় ? এই প্রশ্নের উত্তর দিতে গিয়ে আমাদের আরেকটা প্রশ্নের সম্মুখীন হতে হয়। এই প্রশ্নটা হলো কোনো একটি সংখ্যার উৎপাদক নির্ণয়ের সমস্যা। আমরা এবার চেষ্টা করবো এই প্রশ্নটার উত্তর একটু বৃহত্তর প্রেক্ষিতে খোঁজার।
জানা কথা থেকে অজানার দিকে :
স্কুলের গন্ডির মধ্যে আমরা ইতিমধ্যেই প্রাথমিক কিছু মৌলিক সংখ্যা (যেমন – ২, ৩, ৫, ১১ , … ইত্যাদি) দ্বারা বিভাজ্যতার নিয়ম সম্পর্কে জেনেছি। যেমন ধরো – কোনো সংখ্যা যদি “জোড়” (even numbers) হয়, তাহলে তা ২ দ্বারা বিভাজ্য। আবার কোনো একটি সংখ্যার অঙ্কগুলির বা রাশিগুলির (digits) সমষ্টি যদি ৩ দ্বারা বিভাজ্য হয়, তাহলে সংখ্যাটিও ৩ দ্বারা বিভাজ্য হবে। কোনো সংখ্যার এককের রাশিটি যদি ০ বা ৫ হয়, তাহলে সংখ্যাটিও ৫ দ্বারা বিভাজ্য। কোনো সংখ্যার একান্তর রাশিগুলির (alternating digits) সমষ্টির অন্তর যদি ০ বা ১১ দ্বারা বিভাজ্য হয়, তাহলে সংখ্যাটি ১১ দ্বারা বিভাজ্য হবে।
কিন্তু ৭, ১৩, ১৭, বা ১৯ … ইত্যাদি মৌলিক সংখ্যাগুলি দ্বারা বিভাজ্যতার নিয়ম সম্বন্ধে আমরা কি বলতে পারি ? এই সংখ্যাগুলি দ্বারা বিভাজ্যতার নিয়ম সম্পর্কে আলোকপাত করার জন্যই এই প্রবন্ধের অবতারণা। বৃহত্তর আঙ্গিকে আমাদের উদ্দেশ্য হলো এমন নিয়মের উল্লেখ করা যা শুধু এই কয়েকটি বিশেষ মৌলিক সংখ্যাই নয়, যেকোনো মৌলিক সংখ্যা দ্বারা বিভাজ্যতার জন্য প্রযুক্ত হবে।
পুনশ্চ : আমাদের আসন্ন আলোচনার ক্ষেত্রে আমরা ২ ও ৫ – এই দুটি মৌলিক সংখ্যাকে বাদ রাখবো। তার দুটি কারণ – প্রথমতঃ, ২ এবং ৫ দ্বারা বিভাজ্যতার নিয়ম সত্যিই সহজ ; এবং দ্বিতীয়তঃ, এই দুই মৌলিক সংখ্যা ব্যতিরেকে অন্য সকল মৌলিক সংখ্যা “” এর জন্য 
 একটি “আবৃত্ত দশমিক” (recurring decimals) গঠন করে (যেখানে 
 এবং 
)।
চাবি–সংখ্যার কারসাজি :
আমাদের আলোচনায় প্রতিটি মৌলিক সংখ্যার সঙ্গে একটি করে “চাবি সংখ্যা”কে জুড়ে দেওয়া যাক। এই চাবি-সংখ্যাগুলো ওই মৌলিক সংখ্যা দ্বারা বিভাজ্যতার নিয়মের মধ্যে একটা গুরুত্বপূর্ণ ভূমিকা নিতে চলেছে। ধরা যাক, একটা মৌলিক সংখ্যা “” এর চাবি সংখ্যা খুঁজছি। “
” কে ১, ২, ৩… এইভাবে একেকটা সাধারণ সংখ্যা দিয়ে গুণ করা যাক। সর্বপ্রথম যেই গুণফলের এককের রাশিটা ৯ হবে, গুণফলের অবশিষ্ট রাশিগুলো নিয়ে তার সাথে “১” যোগ করা যাক। এতে যে সংখ্যাটি পাবো, তাকে আমরা 
-এর “চাবি সংখ্যা” (key numbers) বলবো এবং “
” দিয়ে চিহ্নিত করবো। উদাহরণস্বরূপ “৭” একটি মৌলিক সংখ্যা। ৭ কে ৭, ১৭, ২৭, … ইত্যাদি সংখ্যাগুলো দিয়ে গুণ করলে গুণফলের এককের অঙ্ক বা রাশিটি হয় ৯। এর মধ্যে ক্ষুদ্রতম সংখ্যাটি হলো ৭। অর্থাৎ গুণফলটি হলো ৭ x ৭ = ৪৯, যার দশকের রাশিটি হলো ৪। সুতরাং ৭-এর চাবি সংখ্যাটি হলো ৪+১ = ৫। পরবর্তী আলোচনার সুবিধার্থে আমরা প্রাথমিক কিছু (২৩ পর্যন্ত) মৌলিক সংখ্যার চাবি সংখ্যাগুলিকে একটি তালিকাবদ্ধ করলাম।
| ৭ | ৭ | ৫ | 
| ১১ | ৯ | ১০ | 
| ১৩ | ৩ | ৪ | 
| ১৭ | ৭ | ১২ | 
| ১৯ | ১ | ২ | 
| ২৩ | ৩ | ৭ | 
ধরা যাক “” একটি চার অংকের সংখ্যা, যেখানে “
”, “
”, “
”, এবং “
” হলো যথাক্রমে “একক”, “দশক”, “শতক” এবং “সহস্র”-স্থানের অংক বা রাশি (digit)। এইবার আমরা যে গাণিতিক ফলাফলের উল্লেখ করবো তা হলো –
“কোনো একটি মৌলিক সংখ্যা “” দ্বারা 
 বিভাজ্য হবে যদি
  অর্থাৎ  
 রাশিটি “
” দ্বারা বিভাজ্য হয়, যেখানে 
 হলো 
-এর চাবি সংখ্যা।”
নিজে করো :
চেষ্টা করে দেখো খাতায়-কলমে এই বক্তব্যটা প্রমাণ করার!!
একটা সহজ উদাহরণ দিলেই ব্যাপারটা জলের মতো সোজা হয়ে যাবে। ধরো – তুমি জানতে চাও “৪৬৬৯” সংখ্যাটি “৭” দ্বারা বিভাজ্য কিনা !! তার জন্য শুরুতেই আমাদের প্রয়োজন খুঁজে বের করা ৭ এর চাবি সংখ্যাটি। বেশি ছোটাছুটি না করে ওপরের তালিকায় একবার চোখ বুলিয়ে নিলেই দেখতে পাবে ৭ এর চাবি সংখ্যাটি হলো ৫। সুতরাং – ৭ দ্বারা ৪৬৬৯-এর বিভাজ্যতার সমস্যাটির সমতুল্য সমস্যাটি হলো ৭ দ্বারা ৯x১২৫+৬x২৫+৬x৫+৪ = ১৩০৯-এর বিভাজ্যতা, এবং এখান থেকে সিদ্ধান্তে আসাই যায় যে ৪৬৬৯ সংখ্যাটি ৭ দ্বারা বিভাজ্য। এবার তোমরা বলতেই পারো, এটা করে লাভ কি ? দুটোই তো বিভাজ্যতার সমস্যা। ব্যাপারটা হলো ছোট মৌলিক সংখ্যার ক্ষেত্রে পার্থক্যটা বোঝা মুশকিল কিন্তু “”-এর মান যত বাড়তে থাকবে, আমাদের এই নিয়মটার ভূমিকাও ততো গুরুত্ব পাবে।
নিজে করো :
ঠিক একইভাবে তোমরা চেষ্টা করে দেখতে পারো ১৩৪৯ সংখ্যাটি ১৯ দ্বারা বিভাজ্য কিনা !!
মডিউলার অপেক্ষক : আমাদের পরবর্তী আলোচনার সুবিধার্থে আমরা এবার “ভাগশেষ”-কে একটু ভদ্র চোখে দেখবো। কোনো একটি সংখ্যা “” কে “
” দ্বারা ভাগ করলে ভাগশেষকে “
” চিহ্নিত করবো, যা ঋণাত্মকও হতে পারে। উদাহরণস্বরূপ  – Mod [১৩,৭] যেমন “৬” হবে তেমনই “-১” ও হবে, কারণ ১৩ = ৭x১ + ৬ যেমন সত্যি, তেমনই ১৩ = ৭x২ – ১ ও সত্যি। আমাদের পরবর্তী আলোচনার সুবিধার্থে আমরা 
 = ৭, ১১, এবং ১৩ এই তিনটি মৌলিক সংখ্যার (যাদের চাবি সংখ্যা হলো যথাক্রমে 
 = ৫, ১০, এবং ৪) জন্য “
” এর বিভিন্ন অঋণাত্মক পূর্ণ সাংখ্যমানের জন্য “
” এবং “
” এর একটি তালিকা লিপিবদ্ধ করলাম।
| n | ০ | ১ | ২ | ৩ | ৪ | ৫ | ৬ | ৭ | ৮ | ৯ | ১০ | ১১ | ১২ | 
| ১ | ৩ | ২ | ৬ | ৪ | ৫ | ১ | ৩ | ২ | ৬ | ৪ | ৫ | ১ | |
| ১ | -১ | ১ | -১ | ১ | -১ | ১ | -১ | ১ | -১ | ১ | -১ | ১ | |
| ১ | ১০ | ৯ | ১২ | ৩ | ৪ | ১ | ১০ | ৯ | ১২ | ৩ | ৪ | ১ | |
| ১ | ৫ | ৪ | ৬ | ২ | ৩ | ১ | ৫ | ৪ | ৬ | ২ | ৩ | ১ | |
| ১ | ৪ | ৩ | ১২ | ৯ | ১০ | ১ | ৪ | ৩ | ১২ | ৯ | ১০ | ১ | 
আগেও আমরা যেমনটা দেখেছি, তেমনই কল্পনা করি যে “” একটি ছয় অংকের সংখ্যা, যেখানে “
”, “
”, “
”, “
” ইত্যাদি হলো যথাক্রমে “একক”, “দশক”, “শতক”, “সহস্র”-স্থানের অংক বা রাশি (digit)। এইবার আগের ফলাফলটার অনুকরণে আমরা যে গাণিতিক ফলাফলের উল্লেখ করবো তা হলো –
“কোনো একটি মৌলিক সংখ্যা “” দ্বারা 
 বিভাজ্য হবে যদি 
 হয়, যেখানে 
 হলো 
-এর চাবি সংখ্যা। ”
নিজে করো :
চেষ্টা করে দেখো খাতায়-কলমে এই বক্তব্যটা প্রমাণ করার!! একটু খেয়াল করে দেখলেই বুঝবে, যদি “” হয় সেক্ষেত্রে চাবি সংখ্যা হবে “
”, অর্থাৎ 
 সংখ্যাটি ৩ দ্বারা বিভাজ্য হবে তখনই যদি 
 হয়। সুতরাং সংখ্যাটি তখনি ৩ দ্বারা বিভাজ্য হবে, যখন তার অংকসমষ্টি ৩ দ্বারা বিভাজ্য হবে – যা তোমরা সকলেই স্কুলের পাঠ্যপুস্তকে ইতিমধ্যেই জেনে ফেলেছো। আবার যদি “
 এবং 
” হয়, সেক্ষেত্রে উপরের তালিকাকে কাজে লাগিয়ে আমরা বলতে পারি 
 সংখ্যাটি ১১ দ্বারা বিভাজ্য হবে তখনই যদি 
 হয়, অর্থাৎ যদি, 
 রাশিটি ০ বা ১১ দ্বারা বিভাজ্য হয়। একটু খোলসা করে বলতে গেলে ব্যাপারটা কিছুটা এইরকম – আমাদের দেখা দরকার কখন
হবে। এবার খেয়াল করে দেখো, সেইক্ষেত্রে কোনো  , 
, 
, 
 , 
 বা 
 এর জন্য
হতে হবে। অর্থাৎ
হতে হবে। যা  – এরই সমতুল্য। সুতরাং এই নিয়মটিও তোমাদের পূর্বলব্ধ জ্ঞানেরই একটি বৃহত্তর রূপ।
নিজে করো :
তোমরা চেষ্টা করে দেখো তো নির্ণয় করতে পারো কিনা  এই ছয় অংকের সংখ্যাটি কোন কোন শর্তে ৭ এবং ১৩ এই দুটি মৌলিক সংখ্যা দ্বারা বিভাজ্য হবে ?
পরিশেষে দাঁড়িয়ে দুই গণিতজ্ঞের কথা বলতেই হয়, ফার্মা এবং অয়লার। যাঁদের অবিস্মরণীয় কীর্তি “ফার্মা’স লিটল থিওরেম” এবং “অয়লার্স থিওরেম” যা “মডুলার পাটিগণিত” এর দুই স্তম্ভ হিসেবে দাঁড়িয়ে আছে, যেখান থেকে খুব সহজেই তোমরা দেখতে পাবে বিভিন্ন বড়ো বড়ো সংখ্যাকেও যেকোনো মৌলিক সংখ্যা দিয়ে ভাগ করলে সেই কঠিন কাজও কত সহজে করা যায়। তাই চোখ বুলিয়ে দেখতে পারো নিচের তথ্যসূত্রে।
প্রচ্ছদ : স্টিফেন শ্যানক্ল্যান্ড
তথ্যসূত্র: নিচে উইকিপিডিয়ার তিনটি পেজ এবংএকটি বইয়ের নাম উল্লেখ করলাম। তোমরা যারা উৎসাহী, ওই জায়গাগুলোয় দেখার সাথে সাথে সেখানে উল্লিখিত অন্য বইও দেখতে পারো।
১) https://en.wikipedia.org/wiki/Fermat%27s_little_theorem ,
২) https://en.wikipedia.org/wiki/Euler%27s_theorem ,
৩) https://en.wikipedia.org/wiki/Modular_arithmetic ,
৪) ডেভিড এম. বার্টন এর লেখা “এলিমেন্টারি থিওরি অফ নাম্বারস” .

